Accumulating Entropy with Adversarial Sources

Let

- 1. D be a 2-monotone distribution with min-entroppy k.
- 2. $n \in \mathbb{N}$ be the length of sources x_i for $0 \le i < N$ for some N.
- 3. $\pi:[n] \to [n]$ be a cyclic permutation $(\pi^m = id \text{ iff } n|m)$. Then $f_{\pi}:[2]^n \to [2]^n$ where $(x_0,\ldots,x_{n-1}) \mapsto (x_{\pi(0)},\ldots,x_{\pi(n-1)})$. Clearly, $f_{\pi}^m = f_{\pi^m}$.
- 4. \mathcal{A} denote the adversary.
- 5. for any $0 \le p \le 1$, let D_p be the distribution where 1 occurs with probability p and 0 with probability 1-p.
- 6. p be the probability that \mathcal{A} can replace a source with one of its choosing.

1 Version 1 (Sept 24, 2021)

Hybrid H_0 :

- 1. Let $R_0 = 0^n$.
- 2. For $0 \le i < N$,
 - (a) Sample $x_i \leftarrow D$.
 - (b) \mathcal{A} samples $b_i \leftarrow D_p$. If $b_i = 1$, \mathcal{A} chooses $y_i \in [2]^n$ and sets $x_i = y_i$. Otherwise, x_i is unaffected.
 - (c) $R_{i+1} = R_i \oplus f_{\pi}^i(x_i)$
- 3. \mathcal{A} chooses and outputs $R_{\mathcal{A}} \in [2]^n$.
- 4. If $R_A = R_N$, output 1. Otherwise, output 0. modify for $R_A \approx R_N$

Hybrid H_1 : Same as H_0 except \mathcal{A} chooses $R_{\mathcal{A}}$ before the experiment begins and always replaces x_{N-1} with its choice y_{N-1} .

Lemma 1.1.

$$P(H_0 = 1) \le P(H_1 = 1)$$

I think $P(H_1 = 1) = P(H_0 = 1)/(p + (1-p)P(A \text{ correctly guesses } x_{N-1})) \ge P(H_0 = 1)$.

Proof. Suppose $H_0 = 1$. Then \mathcal{A} predicted the value of R_N . Let $R_{\mathcal{A}}$ be the string \mathcal{A} choose before the experiment started. Then choose $y_{N-1} = x_{N-1} \oplus R_N \oplus R_{\mathcal{A}}$. Then

$$R'_N := R_{N-1} \oplus y_{N-1} = R_{N-1} \oplus x_{N-1} \oplus R_N \oplus R_{\mathcal{A}} = R_N \oplus R_N \oplus R_{\mathcal{A}} = R_{\mathcal{A}}$$

where R'_N is the value of the register at the end of H_1 .

Suppose $H_1 = 1$. If \mathcal{A} in H_0 successfully replaces x_{N-1} (which happens with probability p), then $H_0 = 1$ by an analogous argument to the one above. If not, \mathcal{A} must correctly guess x_{N-1} . Since $(H_0 = 1) \implies (H_1 = 1)$, $(H_1 = 0) \implies (H_0 = 0)$, so $P(H_0 = 1) = (p + (1 - p)P(\mathcal{A} \text{ correctly guesses } x_{N-1}))P(H_1 = 1) \le P(H_1 = 1)$.

Hybrid H_2 : Same as H_1 except \mathcal{A} always chooses $R_{\mathcal{A}} = 0^n$.

Lemma 1.2.

$$P(H_1 = 1) = P(H_2 = 1)$$

Proof. Suppose $H_1 = 1$. Then $R_{\mathcal{A}} = R_N$. If \mathcal{A} replaced x_{N-1} with $y_{N-1} \oplus R_{\mathcal{A}}$ instead of y_{N-1} , then $H_2 = 1$. Thus $P(H_1 = 1) \leq P(H_2 = 1)$. The same argument proves $P(H_1 = 1) \geq P(H_2 = 1)$.

it is very easy (actually "easier") in the proof of the first lemma to jump to H_2 . Is it worth having H_1 ? Hybrid H_3 : Same as H_2 except \mathcal{A} computes $T_0 = 0^n$ and $T_{i+1} = T_i \oplus f_{\pi}^i(y_i)$ if $b_i = 1$ and $T_{i+1} = T_i$ otherwise.

 \mathcal{A} only does computations on information it already knows, so it is equivalent to H_2 .

Hybrid H_4 : Same as H_3 except if $b_i = 1$, the choice of y_i must satisfy $f_{\pi}^i(y_i) \& T_i = 0^n$.

Alternate Hybrid H'_3 : Same as H_2 except if i < N-1 and $b_i = 1$, \mathcal{A} always chooses $y_i = 0$. \mathcal{A} can choose any string for y_{N-1} .

I think this has the same effect as tagging, but is more streamlined. This is Hybrid E? I am not convinced this is trivially secure from No Time to Hash. This behaves like having a sequence of permutations π^{ℓ_i} where ℓ_i are "increasing" mod n instead of a constant permutation (which corresponds to the sequence π^i . No Time to Hash does not give a description in that case. We should be ok if for each $0 \le \ell < n$, $\exists 0 \le i < N$ such that $\ell_i = \ell$. Seems stronger than we need, but would definitely work. If N is a multiple of n, "increasing" corresponds to increasing as integers except at N/n - 1 many i.

2 Version 2 (Sept 28, 2021)

Hybrid H_0 :

- 1. Let $R_0 = 0^n$.
- 2. For $0 \le i < N$,
 - (a) Sample $x_i \leftarrow D$.
 - (b) \mathcal{A} samples $b_i \leftarrow D_p$. If $b_i = 1$, \mathcal{A} chooses $y_i \in \{0,1\}^n$ and sets $x_i = y_i$. Otherwise, x_i is unaffected.
 - (c) $R_{i+1} = R_i \oplus f_{\pi}^i(x_i)$
- 3. \mathcal{A} chooses and outputs $R_{\mathcal{A}} \in \{0,1\}^n$.
- 4. If $R_{\mathcal{A}} = R_N$, output 1. Otherwise, output 0. modify for $R_{\mathcal{A}} \approx R_N$

Hybrid H_1 :

- 0. \mathcal{A} chooses $R_{\mathcal{A}}$.
- 1. Let $R_0 = 0^n$.
- 2. For $0 \le i < N$,
 - (a) Sample $x_i \leftarrow D$.
 - (b) \mathcal{A} samples $b_i \leftarrow D_p$. If $b_i = 1$, \mathcal{A} chooses $y_i \in \{0, 1\}^n$ and sets $x_i = y_i$. Otherwise, x_i is unaffected.
 - (c) $R_{i+1} = R_i \oplus f_{\pi}^i(x_i)$
- 3. \mathcal{A} chooses $y_N \in \{0,1\}^n$ and outputs $R_{\mathcal{A}}$. Compute $R_{N+1} = R_N \oplus y_N$.
- 4. If $R_A = R_{N+1}$, output 1. Otherwise, output 0.

Lemma 2.1.

$$P(H_0 = 1) = P(H_1 = 1)$$

Proof. Suppose $H_0=1$. Then \mathcal{A} predicted the value of R_N . Let $R_{\mathcal{A}}$ be the string \mathcal{A} choose before the experiment started. Then choose $y_N=\oplus R_N\oplus R_{\mathcal{A}}$. Then $R_{N+1}:=R_N\oplus y_N=R_{\mathcal{A}}$.

Suppose $H_1=1$. Then $R_{\mathcal{A}}=R_N\oplus y_N$. The adversary in H_0 would know $R_{\mathcal{A}}$ and y_N , so they can $R_{\mathcal{A}}\oplus y_N$ at step 3. Then $H_0=1$.

Hybrid H_2 :

- 0. \mathcal{A} chooses $R_{\mathcal{A}}$.
- 1. Let $R_0 = 0^n$.

- 2. For $0 \le i < N$,
 - (a) Sample $x_i \leftarrow D$.
 - (b) \mathcal{A} samples $b_i \leftarrow D_p$. If $b_i = 1$, \mathcal{A} chooses $y_i \in \{0,1\}^n$ and sets $x_i = y_i$. Otherwise, x_i is unaffected.
 - (c) $R_{i+1} = R_i \oplus f_{\pi}^i(x_i)$
- 3. \mathcal{A} chooses $y_N \in \{0,1\}^n$ and outputs $R_{\mathcal{A}}$. Compute $R_{N+1} = R_N \oplus y_N$.
- 4. If $R_{N+1} = 0$, output 1. Otherwise, output 0.

Lemma 2.2.

$$P(H_1 = 1) = P(H_2 = 1)$$

Proof. Suppose $H_1 = 1$. Then $R_{\mathcal{A}} = R_{N+1}$, so \mathcal{A} knows R_{N+1} and thus $R_N = R_{N+1} \oplus y_N$. To succeed in H_2 , \mathcal{A} chooses $y_N = R_N$ instead.

Now suppose $H_2 = 1$. Then $R_{N+1} = R_N \oplus y_N = 0$, so \mathcal{A} was able to guess $y_N = R_N$. Let $y_N = R_N \oplus R_{\mathcal{A}}$ instead. Then $R_{N+1} = R_{\mathcal{A}}$.

Hybrid H_3 :

- 1. Let $R_0 = 0^n$ and E = 0.
- 2. For $0 \le i < N$,
 - (a) Sample $x_i \leftarrow D$.
 - (b) \mathcal{A} samples $b_i \leftarrow D_p$. If $b_i = 1$, \mathcal{A} chooses $y_i \in \{0,1\}^n$ and sets $x_i = y_i$. If $y_i \neq 0$, set E = 1. Otherwise, x_i is unaffected.
 - (c) $R_{i+1} = R_i \oplus f_{\pi}^i(x_i)$
- 3. \mathcal{A} chooses $y_N \in \{0,1\}^n$. Compute $R_{N+1} = R_N \oplus y_N$.
- 4. If $R_{N+1} = 0$ and E = 0, output 1. Otherwise, output 0.

Lemma 2.3.

$$P(H_2 = 1) = P(H_3 = 1)$$

Proof. Suppose $H_2 = 1$. Since the x_i are independent, they do not depend on R_j for j < 1. Thus if an x_i is replaced with y_i , it does not influence the other x_j . Suppose \mathcal{A} in H_3 chooses the same y_i as \mathcal{A} in H_2 , but they set $x_i = 0$ if $b_i = 1$. Then choose $y'_N = y_N \bigoplus_{b_i=1} f^i_{\pi}(y_i)$. Then $R'_{N+1} = R'_N \oplus y'_N = R_N \oplus y_N = 0$, so $H_3 = 1$.

Suppose
$$H_3 = 1$$
. Then $R_{N+1} = 0$, so $H_2 = 1$.